个人工具
视图

“机器学习”的版本间的差异

来自China Digital Space

跳转至: 导航, 搜索
第1行: 第1行:
{{#get_web_data:
+
机器学习是人工智能的一个子集。这项技术的主要任务是指导计算机从数据中学习,然后利用经验来改善自身的性能,不需要进行明确的编程。在机器学习中,算法会不断进行训练,从大型数据集中发现模式和相关性,然后根据数据分析结果做出最佳决策和预测。机器学习应用具有自我演进能力,它们获得的数据越多,准确性会越高。机器学习已广泛应用于数据挖掘、计算机视觉、自然语言处理、生物特征识别、搜索引擎、医学诊断、检测信用卡欺诈、证券市场分析、DNA序列测序、语音和手写识别、战略游戏和机器人等领域。 <ref>[https://www.sap.cn/insights/what-is-machine-learning.html 什么是机器学习?]</ref>
url=https://zh.wikipedia.org/w/api.php?action=query&prop=extracts&exsentences=4&explaintext&format=json&exintro&titles={{FULLPAGENAME}}
+
 
|format=JSON
+
 
|data=extract=extract}}
+
===机器学习的3种训练方法===
{{#external_value:extract }}[https://zh.wikipedia.org/wiki/{{FULLPAGENAME}} (维基百科{{FULLPAGENAME}})]
+
 
 +
1. 监督机器学习:监督机器学习算法最为常用。在该模型下,数据科学家扮演向导,告诉算法它应该得出什么结论。就像孩子通过在图画书中记住水果来学习识别水果一样,在监督学习中,算法是由已经标记并具有预定义输出的数据集进行训练的。监督机器学习的例子包括算法,如线性和逻辑回归,多类别分类和支持向量机。<ref>[https://www.oracle.com/cn/data-science/machine-learning/what-is-machine-learning/ 机器学习是什么?]</ref>
 +
 
 +
2.无监督机器学习:无监督机器学习相对而言更加独立,在该模式下,计算机会在无人类持续提供密切指导的前提下学习识别复杂的过程和模式。无监督机器学习包括根据没有标签的数据或特定的、定义好输出的数据进行训练。继续使用幼儿教学作类比,无监督机器学习类似于孩子通过观察颜色和图案来识别水果,而不是在老师的帮助下记住水果的名字。孩子(算法)会自己寻找图像之间的相似性,对图像分组,为每一个小组分配一个新标签。无监督机器学习的算法有 K 均值聚类、主成分和独立分量分析以及关联规则。<ref>[https://www.oracle.com/cn/data-science/machine-learning/what-is-machine-learning/ 机器学习是什么?]</ref>
 +
 
 +
3.强化学习:强化学习更接近生物学习的本质,因此有望获得更高的智能。它关注的是智能体如何在环境中采取一系列行为,从而获得最大的累积回报。通过强化学习,一个智能体应该知道在什么状态下应该采取什么行为。最典型的场景就是打游戏。2019年1月25日,AlphaStar(Google 研发的人工智能程序,采用了强化学习的训练方式) 完虐星际争霸的职业选手职业选手“TLO”和“MANA”。<ref>[https://easyai.tech/ai-definition/machine-learning/ 机器学习 – machine learning | ML]</ref>
 +
 
 +
 
 +
===机器学习在生物识别技术中的应用===
 +
 
 +
生物特征识别技术(Biometrics)是指利用人体与生俱来的生理特性和长年累月形成的行为特征来进行身份鉴定的一种识别技术。目前可用于身份识别的人体特征包括指纹、虹膜、面部、掌纹、静脉等生理特征和步态、笔迹、声音等行为特征。生物特征识别技术背后涉及到计算机科学、光学与声学等物理科学、生物科学、生物传感器和生物统计学原理,安全技术,以及人工智能技术等众多基础科学与创新应用技术,是一个完整的多学科技术解决方案。
 +
 
 +
近些年随着人工智能的发展,让生物特征识别技术变得更加成熟。目前,人脸识别技术是生物特征中最具代表性的。
 +
 
 +
人脸识别的流程包括人脸采集、人脸检测、人脸特征提取和人脸匹配识别,其中人脸识别过程采用了机器学习中的AdaBoos算法、卷积神经网络以及支持向量机等多种技术。目前传统人脸识别困难包括面部旋转,遮挡,相似性等都有了很大的算法提升,使得人脸识别的精准度得到极大的提高,以2D人脸、3D人脸、多光谱人脸等多种模态为代表,每种模态都具有不同的采集适应场景、数据安全程度和隐私敏感度等,而大数据的深度学习的加入,使3D人脸识别算法补充2D投影的缺陷,能快速识别人员身份,为二维人脸识别的应用带来了一定的突破。同时,目前基于活体检测技术正作为提高人脸识别安全性的关键性技术,可以有效抵御照片、视频、三维模型、假体面具等仿冒欺诈,自主判断操作用户身份。
 +
 
 +
其他广泛应用到机器学习的生物识别技术还包括步态识别、掌纹识别等。<ref>[https://www.sohu.com/a/428138942_99947626 当前主要生物特征识别技术发展及趋势] </ref>
 +
 
 +
 
  
=== 参考资料 ===
 
<references /> 
 
  
 
=== 中国数字时代相关文章 ===
 
=== 中国数字时代相关文章 ===
 
   
 
   
 +
  
 
*[https://www.google.com/search?q={{PAGENAME}}+site%3Achinadigitaltimes.net%2Fchinese%2F 谷歌搜索:更多 CDT【{{PAGENAME}}】相关文章]
 
*[https://www.google.com/search?q={{PAGENAME}}+site%3Achinadigitaltimes.net%2Fchinese%2F 谷歌搜索:更多 CDT【{{PAGENAME}}】相关文章]
 
*[https://chinadigitaltimes.net/chinese/tag/{{PAGENAME}}/ CDT 网站:【{{PAGENAME}}】相关文章索引]
 
*[https://chinadigitaltimes.net/chinese/tag/{{PAGENAME}}/ CDT 网站:【{{PAGENAME}}】相关文章索引]
 +
  
 
=== 数字空间相关链接 ===
 
=== 数字空间相关链接 ===
 +
 +
* [[平安城市]]
 +
* [[智慧城市]]
 +
* [[雪亮工程]]
 +
* [[大规模监控]]
 +
* [[云极权]]
 +
* [[人脸识别]]
 +
* [[人工智能]]
 +
* [[CDS专页:微信审查]]
 +
* [[健康码]]
 +
* [[智能安防]]
 +
* [[视频监控]]
 +
* [[智慧警务]]
 +
* [[生物识别]]
 +
* [[一键报警]]
 
{{ #dpl: linksto = {{FULLPAGENAME}} }}
 
{{ #dpl: linksto = {{FULLPAGENAME}} }}
[[Category:人工智能]][[Category:老大哥馆]][[Category:监控技术]][[Category:数字威权主义]]
+
* [https://www.google.com/search?q=关键词+site%3Achinadigitaltimes.net%2Fspace%2F  中国数字空间上更多和【天网工程】相关的词条]
 +
 
 +
=== 参考资料 ===
 +
<references /> 
 +
<!--
 +
#############################################################################################
 +
上面是参考资料代码,如果没有“参考资料”,请删除。另外,在下面设置本页面的所属分类:
 +
#############################################################################################
 +
-->
 +
[[Category:数字威权主义]][[Category:老大哥馆]][[Category:监控技术]]

2022年2月27日 (日) 21:39的版本

机器学习是人工智能的一个子集。这项技术的主要任务是指导计算机从数据中学习,然后利用经验来改善自身的性能,不需要进行明确的编程。在机器学习中,算法会不断进行训练,从大型数据集中发现模式和相关性,然后根据数据分析结果做出最佳决策和预测。机器学习应用具有自我演进能力,它们获得的数据越多,准确性会越高。机器学习已广泛应用于数据挖掘、计算机视觉、自然语言处理、生物特征识别、搜索引擎、医学诊断、检测信用卡欺诈、证券市场分析、DNA序列测序、语音和手写识别、战略游戏和机器人等领域。 [1]


机器学习的3种训练方法

1. 监督机器学习:监督机器学习算法最为常用。在该模型下,数据科学家扮演向导,告诉算法它应该得出什么结论。就像孩子通过在图画书中记住水果来学习识别水果一样,在监督学习中,算法是由已经标记并具有预定义输出的数据集进行训练的。监督机器学习的例子包括算法,如线性和逻辑回归,多类别分类和支持向量机。[2]

2.无监督机器学习:无监督机器学习相对而言更加独立,在该模式下,计算机会在无人类持续提供密切指导的前提下学习识别复杂的过程和模式。无监督机器学习包括根据没有标签的数据或特定的、定义好输出的数据进行训练。继续使用幼儿教学作类比,无监督机器学习类似于孩子通过观察颜色和图案来识别水果,而不是在老师的帮助下记住水果的名字。孩子(算法)会自己寻找图像之间的相似性,对图像分组,为每一个小组分配一个新标签。无监督机器学习的算法有 K 均值聚类、主成分和独立分量分析以及关联规则。[3]

3.强化学习:强化学习更接近生物学习的本质,因此有望获得更高的智能。它关注的是智能体如何在环境中采取一系列行为,从而获得最大的累积回报。通过强化学习,一个智能体应该知道在什么状态下应该采取什么行为。最典型的场景就是打游戏。2019年1月25日,AlphaStar(Google 研发的人工智能程序,采用了强化学习的训练方式) 完虐星际争霸的职业选手职业选手“TLO”和“MANA”。[4]


机器学习在生物识别技术中的应用

生物特征识别技术(Biometrics)是指利用人体与生俱来的生理特性和长年累月形成的行为特征来进行身份鉴定的一种识别技术。目前可用于身份识别的人体特征包括指纹、虹膜、面部、掌纹、静脉等生理特征和步态、笔迹、声音等行为特征。生物特征识别技术背后涉及到计算机科学、光学与声学等物理科学、生物科学、生物传感器和生物统计学原理,安全技术,以及人工智能技术等众多基础科学与创新应用技术,是一个完整的多学科技术解决方案。

近些年随着人工智能的发展,让生物特征识别技术变得更加成熟。目前,人脸识别技术是生物特征中最具代表性的。

人脸识别的流程包括人脸采集、人脸检测、人脸特征提取和人脸匹配识别,其中人脸识别过程采用了机器学习中的AdaBoos算法、卷积神经网络以及支持向量机等多种技术。目前传统人脸识别困难包括面部旋转,遮挡,相似性等都有了很大的算法提升,使得人脸识别的精准度得到极大的提高,以2D人脸、3D人脸、多光谱人脸等多种模态为代表,每种模态都具有不同的采集适应场景、数据安全程度和隐私敏感度等,而大数据的深度学习的加入,使3D人脸识别算法补充2D投影的缺陷,能快速识别人员身份,为二维人脸识别的应用带来了一定的突破。同时,目前基于活体检测技术正作为提高人脸识别安全性的关键性技术,可以有效抵御照片、视频、三维模型、假体面具等仿冒欺诈,自主判断操作用户身份。

其他广泛应用到机器学习的生物识别技术还包括步态识别、掌纹识别等。[5]



中国数字时代相关文章


数字空间相关链接

参考资料